Asymmetric Spirocyclization Enabled by Iridium and Brønsted Acid-Catalyzed Formal Reductive Cycloaddition
نویسندگان
چکیده
Open AccessCCS ChemistryRESEARCH ARTICLE1 Jul 2021Asymmetric Spirocyclization Enabled by Iridium and Brønsted Acid-Catalyzed Formal Reductive Cycloaddition Nan-Fang Mo†, Le Yu†, Ying Zhang, Ya-Hong Yao, Xun Kou, Zhi-Hui Ren Zheng-Hui Guan Mo† Key Laboratory of Synthetic Natural Functional Molecule Ministry Education, Department Chemistry & Materials Science, Northwest University, Xi’an 710127 †N.-F. Mo L. Yu contributed equally to this work.Google Scholar More articles author , Yu† Zhang Google Yao Kou *Corresponding author: E-mail Address: [email protected] https://doi.org/10.31635/ccschem.020.202000415 SectionsSupplemental MaterialAboutAbstractPDF ToolsAdd favoritesTrack Citations ShareFacebookTwitterLinked InEmail A catalytic, enantioselective spirocyclization formanilides or formylindolines enamides has been developed herein. The reaction proceeds through a sequential iridium-catalyzed hydrosilylation tertiary chiral phosphoric acid-catalyzed formal cycloaddition exocyclic enamides, thus providing straightforward access diverse array enantioenriched azaspirocycles under mild conditions. new bowl-shaped acid bearing an o-CF3-aryl on the H8-BINOL-framework OCF-CPA (CPA18) as effective, multipoint-controlled catalyst for reaction. And mechanistic investigations reveal presence crucial C–H?F hydrogen bonding in enantiodetermining transition states. Download figure PowerPoint Introduction Spirocycles are not only important structural motifs wide natural products bioactive compounds1,2 but also privileged scaffolds modern drug discovery. Their rigid unique three-dimensional diversity is used efficiently designing pharmacophores recognize target proteins.3–5 Among different spirocyclic subclasses, 1-azaspirocycles one most discovery, which their well-defined spatial arrangements often beneficial binding.2–6 importance subclass spirocycles can be gleaned its appearance pentacyclic core pyrroindomycins, NK1 tachykinin receptor antagonist, antimalarial cipargamin, U.S. Food Drug Administration (FDA)-approved rolapitant (Scheme 1a). However, due intrinsic complexity challenge stereocontrolled construction sterically congested nitrogen-constrained quaternary spirocenters,7–9 synthesis involves multistep sequences,2,10–13 making them underrepresented chemical libraries. Facile, synthetic framework class spirocycle remains organic chemistry.14–22 Scheme 1 | Selective examples (a) 1-azaspirocycles, (b) reductive functionalization amides, (c) our work. readily available amides become promising method substituted amines.23,24 In context, owing stability amide group, two-step process reduction–activation nucleophilic substitution addition generally involved. Therefore, stoichiometric activating agents reductants, including triflic anhydride (Tf2O),25–27 DIBAL-H,28,29 Schwartz’s reagent (Cp2ZrHCl),30,31 NaH32 have successfully motivate 1b). Tf2O-mediated cycloadditions with alkynes alkenes one-pot manner give azaheterocycles reported.33–35 Particularly, interesting l-proline-catalyzed bis-functionalization secondary 2,2-disubstituted 3-iminoindoline recently.36 Alternatively, seminal catalytic silane reagents emerged. IrCl(CO)(PPh3)237–44 Mo(CO)645–47 effective catalysts diversifying significantly. Despite these notable achievements, reduction-initiated transformation rarely explored. development asymmetric enantiomerically pure highly desirable. Since O-silylated hemiaminal proposed intermediate amides,37–44 we hypothesized that desilanolation silyl ether I would initiate 1c). As such, 1-azaspirocycle constructed accordingly. case, phosphate counterion resulting iminium II might impart chirality ion-pairing interaction.48–50 Simultaneously, hydrogen-bonding interaction between Lewis basic site proton enamide enhance enantioinduction reaction.51,52 present herein transformation: formanilide Experimental Methods General procedure formanilides: 10 mL tube (tube A), was charged (0.12 mmol, 1.2 equiv), IrCl(CO)(PPh3)2 (0.9 mg, 1.0 mol %), dry o-xylene (1.0 mL), 1,1,3,3-tetramethyldisiloxane (TMDS) (26.8 2.0 equiv) added stirred 0.5 h. Another B) (0.1 CPA18 (OCF-CPA) (10 (2.0 mL). solution transferred into B, then, mixture B at –25 °C. After completion, warmed room temperature. crude directly purified flash column chromatography silica gel (CH2Cl2/ethyl acetate = 8?1 3?1 eluent) afford corresponding product. experimental details characterization Supporting Information. Computational All calculations were performed Gaussian 09 package. stable structures states fully optimized unrestrainedly dispersion-corrected density functional theory (DFT) using B3LYP (B3LYP-D3) 6-31G(d) basis set. Normal vibrational mode analysis same level confirmed minima (zero imaginary frequency) saddle points (one frequency). Furthermore, coordinate (IRC) applied identify connecting reactants products. Corrected single-point energies solvent computed B3LYP-D3 6-311G(d,p) set solvation model based density. relative zero-point energy (ZPE) correction free (at 298.15 K) kcal/mol. Results Discussion Reaction conditions outcome We began identification N-methyl 1. It found 1? quantitatively generated ambient temperature Vaska’s complex, IrCl(CO)(PPh3)2, (Me2HSi)2O (TMDS). Having obtained N-phenyl precursor, next examined whether 2 could engineered (Table 1). Many commonly steric electronic properties screened; tested promoted desired product 3 high yield, low-to-moderate enantiomeric excess (ee) 1, CPA1– CPA16). These preliminary results revealed associated accomplishing Table Optimization Conditionsa aConditions: mmol), TMDS (0.2 mmol) mL) Then, CPA %) 0 °C Isolated yields andee determined high-performance liquid (HPLC). bToluene solvent. cCH2Cl2 dThe carried out weaker less directional nature electrostatic counteranion substrate key factor effectiveness enantiocontrol.53 Inspired state-of-the-art design incorporating fluorine effects,54–58 speculated enantiocontrol enhanced additional attraction substrate.59,60 CPA17 either o-F-aryl substitutions 3,3?-positions first synthesized subsequently delighted observe enantioselectivity indeed gave rise improvement, achieving 72% ee 80% CPA18. Moreover, increased 83% lowering ?25 CPA18, no further improvement modifying ( CPA19– CPA25) parameters. Because substituent N-aryl ion may alter cationic counteranion, then tuned substituents improve (Figure respect, 2,4,6-trimethylbenzyl protected 1-G8 provided 4,4?-spiro-tetrahydroquinoline 3-G8 97% 94% yield. group conveniently removed N–H 8 90% yield without loss purity via Pd/C-catalyzed hydrogenation 1b), demonstrating utility addition, formylindoline 4 displayed reactivity This result valuable indoline-fused method. 4% observed when acyclic 5 employed reaction, albeit obtained. Figure Asymmetric N-alkyl alkyl groups from optimization studies; *reaction run o-xylene/toluene (v/v 1/2) ?78 Removal Scope established optimal conditions, investigated scope 2a). Formanilides electron-donating substituents, such methoxy, underwent reduction smoothly excellent enantioselectivities 9– 19, 95–98% ee, 87–97% yield). Specifically, 3,4-dimethoxy single regioselective 17 89% halide F, Cl, Br, compatible both 20– 22, 92–94% 80–91% Notably, formyl-2-naphthylamine produced exclusively 23 95% 93% Enamidesa 12 2b) ability tolerate component remarkable. Enamides electron-neutral aryl rings, methyl all tetrahydroquinolines 24– 28, 93–98% 88–95% 1,3-Benzodioxole-containing participated produce tetrahydroquinoline 29 82% Enamide strong electron-withdrawing nitro converted 30 96% 75% chloro position 31– 34, 96–98% 93–97% containing fluoro trifluromethyl well tolerated form 35– 37, 97–98% 90–92% indicate property little influence demonstrated late-stage functionalizations 2c). To satisfaction, family steroid vitamin E-containing substrates generating cholesterol, ?-sitosterol, estrone, trans-dehydroandrosterone, tocopherol-containing diastereoselectivities good 38– 42, >20?1 dr, 62–73% alkenyl electrophilic ketone chemoselectivity indoline nucleus ubiquitous motif pharmaceutical targets, accessible indolines particularly attractive synthesis. installation stereocenter C7-position especially challenge. An advantage system construct C7 bound nitrogen spirocenters, easily achieved alternative protocol 3). 4-, 5-, 6-position particular, hindered 6-methyl-substituted 45 99% Like tolerance noted earlier, methyl, fluro, chloro, bromo, formylindolines, spirocyclization. absolute configuration 56 unambiguously X-ray crystallographic diffraction. Formylindolines aReaction conditions: Formylindoline [IrCl(CO)(PPh3)2] toluene –78 Mechanistic investigation gain insight cycle, conducted control experiments. did proceed absence acid, occurred p-toluene sulfonic 2). experiments suggest plays vital role generate active cycloaddition. investigation: catalysis. obviously intramolecular cyclization III, isolated trapped, DFT better understand origin uncover special CF3 during induction (simple model). free-energy profile complex III R given 3a. calculated activation reactive onto isoindolone-ium im1 state TS-1 6.8 Subsequently, deprotonative rearomatization exothermic TS-2 barrier 0.1 kcal/mol im2. Release final requires 5.6 DFT. Calculated Gibbs profiles PCM(o-xylene)B3LYP-D3/6-311G(d,p)//B3LYP-D3/6-31G(d) theory. lowest-energy CPA7 selected distances bonds ?-stacking shown (c). Enantiodetermining explored two 3b (the comparative depicted Information). reactant docked mainly N–H?O C–H?O bonds. TS1-R-CPA7, there sigma–? methylene H ?-benzene CPA7,61,62 while TS1-S-CPA7, weak bond exits carbonyl O reactant. result, ?G values TS1-R-CPA7 (8.5 kcal/mol) TS1-S-CPA7 (8.6 almost identical, agrees low experiment (16% ee). contrast, shows geometry TS-1, formed o-CF3 TS1-R-CPA18 TS1-S-CPA18, play roles holding back side make reactant–catalyst much stronger,56,59–60 comparison CPA7. force multiple allows generation parallel-displaced moiety o-CF3-benzene aniline TS1-S-CPA18.61,62 imide interacting phosphate; respective makes H-bonds stronger. According coupling interactions, 1.6 ??G (6.8 TS1-S-CPA18 (8.4 predicts toward formation (R)- 3, consistent result. effect G8 3c). TS1-R-CPA18, stronger stabilizes TS1-R-CPA18(G8) gives lowered (?G kcal/mol). TS1-S-CPA18(G8), side-CH3 rotates weakens P=O?H–C C–H bond. distorted center (eight-membered ring) 8.8 compared TS1-S-CPA18. experimentally higher 2,4,6-trimethylbenzyl-substituted substrates. Conclusion demonstrate conceptual robust enamides. (OCF- CPA) proceeded exhibited compatibility, azaspirocycles. OCF- anticipate ortho-CF3-aryl multipoint controlled will find applications related Information available. Conflict Interest authors declare competing financial interests. Funding thank generous grant National Science Foundation China (grant nos. 21971204 21622203) Innovation Capability Support Program Shaanxi Province no. 2020TD-022). Acknowledgments wish acknowledge HPC NWU calculations. References Abe H.; Aoyagi S.; Kibayashi C.Total Synthesis Tricyclic Marine Alkaloids (–)-Lepadiformine, (+)-Cylindricine C, (–)-Fasicularin Common Intermediate Formed Formic Acid-Induced Intramolecular Conjugate Azaspirocyclization.J. Am. Chem. Soc.2005, 127, 1473–1480. 2. Dake G.Recent Approaches Construction 1-Azaspiro[4.5]decanes Related 1-Nzaspirocycles.Tetrahedron2006, 62, 3467–3492. 3. Groll M.; Balskus E. P.; Jacobsen N.Structural Analysis Spiro ?-Lactone Proteasome Inhibitors.J. Soc.2008, 130, 14981–14983. 4. Wang J.; Cady S. D.; Balannik V.; Pinto DeGrado W. F.; M. H.Discovery Spiro-Piperidine Inhibitors Modulation Dynamics M2 Proton Channel Influenza Virus.J. Soc.2009, 131, 8066–8076. 5. Zheng Y.; Tice C. Singh B.The Use Spirocyclic Scaffolds Discovery.Bioorg. Med. Lett.2014, 24, 3673–3682. 6. Petersen P. Jacobus N. Mroczenski-Wildey Maiese Greenstein Steinberg D. A.Pyrroindomycins, Novel Antibiotics Produced Streptomyces Rugosporus LL-42D005. II. Biological Activities.J. Antibiot.1994, 47, 1258–1265. 7. Quasdorf K. W.; Overman E.Catalytic Enantioselective Quaternary Carbon Stereocentres.Nature2014, 516, 181–191. 8. Zeng X.-P.; Cao Z.-Y.; Y.-H.; Zhou J.Catalytic Desymmetrization Reactions All-Carbon Stereocenters.Chem. Rev.2016, 116, 7330–7396. 9. Liu Han S.-J.; W.-B.; Stoltz B. M.Catalytic Stereocenters: Assembly Building Blocks Biologically Active Molecules.Acc. Res.2015, 48, 740–751. 10. D’yakonov V. A.; Trapeznikova O. de Meijere Dzhemilev U. M.Metal Complex Catalysis Spirocarbocycles.Chem. Rev.2014, 114, 5775–5814. 11. Carreira Fessard T. C.Four-Membered Ring-Containing Spirocycles: Strategies Opportunities.Chem. 8257–8322. 12. Ding Meazza Guo Yang J. Rios R.New Development Compounds.Chem. Soc. Rev.2018, 5946–5996. 13. Xu P.-W.; J.-S.; Chen C.; Stereocenters.ACS Catal.2019, 9, 1820–1882. 14. Jiang X.; R.Recent Developments Catalytic Inverse-Electron-Demand Diels–Alder Reaction.Chem. Rev.2013, 113, 5515–5546. 15. Masson G.; Lalli Benohoud Dagousset G.Catalytic [4+2]-Cycloaddition: Strategy Access Aza-Hexacycles.Chem. 902–923. 16. Trost Morris J.Palladium-Catalyzed Diastereo- Substituted Cyclopentanes Through Dynamic Kinetic [3+2]-Cycloaddition Vinyl Cyclopropanes Alkylidene Azlactones.Angew. Int. Ed.2011, 50, 6167–6170. 17. Shi Sun T.; R.Bifunctional Organocatalytic Reactions: Highly Efficient Situ Substrate Generation Activation Construct Azaspirocyclic Skeletons.Angew. Ed.2012, 51, 2084–2087. 18. Xing G.-J.; Zhu R.-Y.; Tan Tu S.A Isatin-Involved Povarov Reaction: Spiro[Indolin-3,2?-Quinoline] Scaffold.Org. Lett.2013, 15, 128–131. 19. Zhuo C.-X.; Cheng Q.; Zhao You S.-L.Enantioselective Pyrrole-Based Spiro- Polycyclic Derivatives Iridium-Catalyzed Allylic Dearomatization Controllable Migration Reactions.Angew. Ed.2015, 54, 8475–8479. 20. Nagamoto Yamauchi Nishimura T.Iridium-Catalyzed [3+2] Annulation Aromatic Ketimines Alkynes Activation: Unexpected Inversion Enantioselectivity Induced Protic Acids.Chem. Commun.2016, 52, 5876–5879. 21. Adams K.; Ball A. Birkett Brown L.; Chappell B.; Gill Tony Lo Patmore Rice R.; Ryan Raubo Sweeney B.An Iron-Catalysed C-C Bond-Forming Cascade Providing Sustainable New 3D Heterocyclic Frameworks.Nat. Chem.2017, 396–401. 22. Li Gu Z.; Qiao Z.Asymmetric Aerobic Decarboxylative N-Aryl ?-Amino Acids Methylenephthalimidines Cooperative Photoredox Chiral Acid Catalysis.Chem. Commun.2019, 55, 12916–12919. 23. Huang P.-Q.Direct Transformations Amides: Tactics Recent Progress.Acta Chim. Sinica.2018, 76, 357–365. 24. Kaiser Bauer Lemmerer Maulide N.Amide Emerging Tool Chemoselective Synthesis.Chem. 7899–7925. 25. Xiao K.-J.; Luo J.-M.; Ye K.-Y.; P.-Q.Direct, One-Pot Sequential Alkylation Lactams/Amides Grignard Organolithium Reagents Lactam/Amide Activation.Angew. Ed.2010, 49, 3037–3040. 26. A.-E.; Transformation Secondary Amides Amines: Triflic Anhydride Activated Alkylation.Angew. 8314–8317. 27. T.-T.; P.-Q.Chemoselective ?-Amino-?-Cyanophosphonates Gem-Cyanation–Phosphonylation Amides.Org. Lett.2019, 21, 3808–3812. 28. Shirokane Kurosaki Sato Chida N.A Direct Entry N-Methoxyamines N-Methoxyamides N-Oxyiminium Ions.Angew. 6369–6372. 29. Vincent Guillot Kouklovsky C.Stereodivergent N,O-Containing Bicyclic Compounds Addition Nucleophiles N-Alkoxybicyclolactams.Angew. 1350–1353. 30. Wada Yoritate Minamikawa Takayama N.; N.Total (±)-Gephyrotoxin Amide-Selective Nucleophilic Addition.Angew. Ed.2014, 53, 512–516. 31. Nakajima Oda N.Chemoselective Tertiary Amides, N-Methoxyamides.Chem. Eur. J.2014, 20, 17565–17571. 32. Ong Fan Dixon Chiba S.Transition-Metal-Free Functionalization Carboxamides Lactams ?-Branched Amine Synthesis.Angew. Ed.2020, 59, 11903–11907. 33. Movassaghi Hill Ahmad K.Direct Pyridine Derivatives.J. Soc.2007, 129, 10096–10097. 34. J.-L.; Y.-N.; Geng P.-Q.Metal-Free Quinolines Condensation Alkynes: Revelation Nitrilium Intermediates 2D NMR Techniques.Sci. Chem.2018, 61, 687–694. 35. S.-R.; Wu D.-P.; P.-Q.Intermolecular Dehydrative [4+2] Aza-Annulation N-Arylamides Alkenes: Divergent Entrance Aza-Heterocycles.Org. 1681–1685. 36. X.-G.; Wei Ji K.-L.; J.-F.; P.-Q.Organocatalytic, Bis-Functionalization 2,2-Disubstituted 3-Iminoindoline.Org. 7587–7591. 37. Motoyama Aoki Takaoka Aoto Nagashima H.Highly Aldenamines Silane-Reduction/Dehydration Under Mild Conditions.Chem. Commun.2009, 1574–1576. 38. Gregory Chambers Hawkins Jakubec J.Iridium-Catalyzed Nitro-Mannich Cyclization.Chem. J.2015, 111–114. 39. N.Iridium-Catalyzed N-Methoxyamides.Org. Lett.2015, 17, 1696–1699. 40. P.-Q.; Ou F.Chemoselective Alkynylation Ir Cu (I) Bis-Metal 11967–11970. 41. Fuentes Arriba Á. Lenci E.; Sonawane Formery O.; Strecker Late-Stage Amide Lactam Cyanation.Angew. Ed.2017, 56, 3655–3659. 42. Xie L.-G.; Ugi-Type Amides.Nat. Commun.2018, 2841. 43. Takahashi Yoshii Lett.2018, 5705–5708. 44. Hu X.-H.; P.-Q.Expeditious Total Syntheses Aspidosperma Exploiting Iridium(I)-Catalyzed Reactive Enamine Intermediates.Angew. Ed.2018, 57, 11354–11358. 45. Trillo Slagbrand Tinnis Adolfsson H.Facile Preparation Pyrimidinediones Thioacrylamides Amides.Chem. Commun.2017, 9159–9162. 46. Volkov H.Transformation Functionalized Triazolines.ACS Catal.2017, 7, 1771–1775. 47. H.Straightforward Nitrile Mo(CO)6-Catalyzed Carboxamides.Angew. 12347–12351. 48. Phipps R. Hamilton G. Toste F. D.The Progression Anions Concepts Applications Catalysis.Nat. Chem.2012, 4, 603–614. 49. Mahlau List B.Asymmetric Counteranion-Directed Catalysis: Concept, Definition, Applications.Angew. Ed.2013, 518–533. 50. Brak N.Asymmetric Ion-Pairing Catalysis.Angew. 534–561. 51. Parmar Sugiono Raja Rueping M.Complete Field Guide BINOL-Phosphate Derived Metal History Classification Mode Activation; Acidity, Hydrogen Bonding, Ion Pairing, Phosphates.Chem. 9047–9153. 52. Akiyama Mori K.Stronger Acids: Progress.Chem. Rev.2015, 115, 9277–9306. 53. Kang W.Asymmetric Counter-Anion-Directed Aminomethylation: ?-Amino Trapping Enol Intermediate.J. Soc.2019, 141, 1473–1478. 54. Momiyama Tabuse Noda Yamanaka Fujinami Yamanishi Izumiseki Funayama Okada Adachi Terada M.Molecular Design Two Different Acidic Sites: Regio-, Diastereo-, Hetero-Diels-Alder Azopyridinecarboxylate Amidodienes Catalyzed Carboxylic Acid-Monophosphoric Acid.J. Soc.2016, 138, 11353–11359. 55. Wen Metola Anslyn X.Rhodium-Catalyzed Hydrogenation Unprotected NH Imines Assisted Thiourea.Angew. 8467–8470. 56. Lee Silverio Torker Robbins Haeffner van der Mei Hoveyda H.Catalytic Organoboron Fluoroketones Controlled Electrostatic Interactions.Nat. Chem.2016, 8, 768–777. 57. Cahard Bizet V.The Influence Fluorine 43, 135–147. 58. Zimmer Sparr Gilmour R.Fluorine Conformational Effects Organocatalysis: Molecular Design.Angew. 11860–11871. 59. Champagne Desroches Paquin F.Organic Hydrogen-Bond Acceptor: Examples Applications.Synthesis2015, 306–322. 60. Schneider H. J.Hydrogen Bonds Fluorine. Studies Solution, Gas Phase Computations, Conflicting Conclusions Crystallographic Analyses.Chem. Sci.2012, 1381–1394. 61. Neel Hilton Sigman D.Exploiting Non-Covalent ?-Interactions Catalyst Design.Nature2017, 543, 637–646. 62. Huber Margreiter Fuchs Grafenstein Tautermann Liedl Fox T.Heteroaromatic ?-Stacking Energy Landscapes.J. Inf. Model.2014, 1371–1379. Previous articleNext article FiguresReferencesRelatedDetails Issue AssignmentVolume 3Issue 7Page: 1775-1786Supporting Copyright Permissions© 2020 Chinese Chemical SocietyKeywordschiral acidenamidesasymmetric catalysisazaspirocyclesformanilidesAcknowledgmentsThe Downloaded 966 times Loading ...
منابع مشابه
Iridium-Catalyzed Reductive Nitro-Mannich Cyclization
A new chemoselective reductive nitro-Mannich cyclization reaction sequence of nitroalkyl-tethered lactams has been developed. Relying on the rapid and chemoselective iridium(I)-catalyzed reduction of lactams to the corresponding enamine, subsequent nitro-Mannich cyclization of tethered nitroalkyl functionality provides direct access to important alkaloid natural-product-like structures in yield...
متن کاملAsymmetric rearrangement of racemic epoxides catalyzed by chiral Brønsted acids.
This paper describes a chiral Brønsted acid catalyzed asymmetric 1,2-rearrangement of racemic epoxides via a hydrogen-shift process for the synthesis of chiral aldehydes, and, followed by a reduction, a variety of optically active alcohols can be furnished in moderate yields with up to 50% ee. Especially, a facile one-pot synthesis of chiral alcohols directly from simple alkenes by a sequential...
متن کاملIridium-catalyzed asymmetric hydrogenation of cyclic enamines.
The first highly enantioselective iridium-catalyzed hydrogenation of cyclic enamines has been developed. This new reaction provided an efficient method for the synthesis of optically active cyclic tertiary amines including natural product crispine A.
متن کاملIridium-catalyzed asymmetric hydroalkynylation reactions of oxabenzonorbornadienes.
Oxabenzonorbornadienes were found to be suitable substrates for asymmetric hydroalkynylation reactions. Catalyzed by the complex of [Ir(COD)Cl](2) and (R)-SYNPHOS, oxabenzonorbornadienes and terminal alkynes could react smoothly to give the alkynylated products in moderate to good yields (up to 93% yield) and enantioselectivities (up to 85% ee).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: CCS Chemistry
سال: 2021
ISSN: ['2096-5745']
DOI: https://doi.org/10.31635/ccschem.020.202000415